Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3430UF0-1

THURSDAY, 25 MAY 2023 - MORNING

SCIENCE (Double Award) Unit 6 – PHYSICS 2

HIGHER TIER

1 hour 15 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	5				
2.	10				
3.	12				
4.	10				
5.	10				
6.	13				
Total	60				

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. The assessment of the quality of extended response (QER) will take place in question **4(a)**.

Equations					
		speed =	distance time		
accele	ration [o	r decelera	tion] = $\frac{\text{change in velocity}}{\text{time}}$		$a = \frac{\Delta v}{t}$
acce	leration	= gradien	t of a velocity-time graph		
distanc	e travelle	d = area	under a velocity-time graph		
	resultant	force = r	nass \times acceleration		F = ma
we	ight = m	ass × gra	vitational field strength		W = mg
	W	ork = forc	ce × distance		W = Fd
	kinetic	energy =	$\frac{\text{mass} \times \text{velocity}^2}{2}$		$KE = \frac{1}{2} mv^2$
change in pot energy	ential =	mass ×	gravitational field change strength × height	in t	PE = mgh
	force =	spring co	x extension		F = kx
work done i	n stretch	ing = area	a under a force-extension graph	ו	$W = \frac{1}{2} Fx$
SI multipliers					
	Prefix	Symbol	Conversion factor	Multip	lier
	pico	р	divide by 10000000000000	1 × 10) ⁻¹²
	nano	n	divide by 1000000000	1 × 10	D ⁻⁹
	micro	μ	divide by 1000000	1 × 10	D ⁻⁶
	milli	m	divide by 1000	1 × 10	0 ⁻³
	centi	с	divide by 100	1 × 10	0 ⁻²
	kilo	k	multiply by 1000	1 × 1	0 ³
	mega	М	multiply by 1000000	1 × 1	0 ⁶
	giga	G	multiply by 1000000 000	1 × 1	09

Т

terra

multiply by 1000000000000

 $1 imes 10^{12}$

•	(a)	A cla They	ass investiga / model dec	ates radioactive decay. ay using 8-sided dice.			Ex
				0	P 6		
		Each They Thes They Each	n of the 10 g / throw the 0 se represen / repeat 7 m n group's re	groups has 50 dice. dice and remove all whi t decayed nuclei. nore times and record th sults are then added to	ich land with an 8 facir he number of dice rem gether.	ng upwards. aining after each throw.	
		(i)	Freva sug	gests that it is good pra	ctice to add the result	s together to give a larger	
		(1)	sample siz Explain w	ze. hether you agree.		[1]
	(b)	(") The	results from	n the experiment are given	number. /en in the table below.	[2]
				Number of throws	Number of dice remaining		
				0	500		
				1			
				1	435		
				1 2	435 380		
				1 2 3	435 380 335		
				1 2 3 4	435 380 335 291		
				1 2 3 4 5	435 380 335 291 256		
				1 2 3 4 5 6	435 380 335 291 256 224		
				1 2 3 4 5 6 7	435 380 335 291 256 224 196		

5 Examiner Plot the data on the grid below and draw a suitable curve. The first 4 points have been plotted for you. (i) only [3] Number of dice remaining 500> 450 * 400 350 Ж 3430UF01 05 300 250 200 150-100 50 0+ 0 2 3 5 7 Number of throws 4 Ġ 1

			'	Examiner
	(ii)	Add lines to the graph to find the number of throws required to halve the num of dice. This is the half-life.	ber	only
		Give your answer to 1 decimal place.	[2]	
		number of throws =		
	<i>(</i>)			
	(111)	I he experiment is repeated with 10-sided dice. Ieuan suggests the data could be used to model nuclear decay with a shorter half-life than with 8-sided dice. Explain whether you agree.	[2]	
			[_]	
	•••••			
	•••••			
				10
06		© WJEC CBAC Ltd. (3430UF0-1)		

3430UF01 07

BLANK PAGE

7

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

9 Examiner only At some time later in the fall, the air resistance acting on the apple is 0.25 N. (ii) 0.25N 1.5N Determine the size of the resultant force acting on the apple. [1] resultant force =N (iii) Use the equation: 3430UF01 09 resultant force = mass \times acceleration to calculate the new acceleration of the apple. [3] acceleration = m/s² The Apollo 15 astronaut David Scott performed an experiment on the Moon, where (C) there is no air. He predicted that if a hammer and a feather were dropped together from the same height, they would hit the Moon's surface at the same time. Explain whether you agree with this prediction. [2] 12

Padiagetive waste contains a mixture of isotopes with a variety of half lives	E
The isotopes emit alpha, beta and gamma radiation.	
Include in your answer:	
a description of alpha, beta and gamma radiation,	
 the properties of alpha, beta and gamma radiation, how radioactive waste could be safely stored 	
	••••••
	••••••
	••••••
One isotope of uranium (U) decays naturally by alpha (α) decay into thorium (Th) in turn decays into protactinium (Pa) by beta (β) decay.) which
Complete the decay equation for this decay.	[4]
$^{\dots}U \rightarrow {}^{231}_{90}Th + {}^{4}\alpha$	
231TL D 100	
	Radioactive waste contains a mixture of isotopes with a variety of half-lives. The isotopes emit alpha, beta and gamma radiation. Discuss the safe storage of radioactive waste. Include in your answer: • a description of alpha, beta and gamma radiation, • the properties of alpha, beta and gamma radiation, • how radioactive waste could be safely stored. () () () () () () () () () ()

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Examiner only The Sun and Arcturus have different colours. (i) Use information from the diagram to compare their other properties. [2] (ii) The Sun is currently on the main sequence. At the end of this stage of its life cycle it will become a red giant like Arcturus. Explain, in terms of forces **and** fusion, why the Sun will become a red giant. [4] 10

15	© WJEC CBAC Ltd. (3430UF0-1) Turn ove	 r.
	TURN OVER FOR THE REST OF THE QUESTION	
(iii) 	Explain why, in practice, the car will not reach the theoretical maximum velocity.[2	2]
	velocity = unit =	
	to calculate the theoretical maximum velocity of the car if its mass is 0.075 kg. Give the unit with your answer. [4]
	kinetic energy = $\frac{1}{2}$ × mass × velocity ²	
(ii)	When the car is released the work done in stretching the spring is transferred to the car as kinetic energy.	
	work done =	J
(i)	Use the graph and an equation from page 2 to calculate the work done in stretching the spring by 0.15 m.	Exai oi

			Examiner
(b)	The car's maximum kinetic energy is found to be 0.8 J. A force brings it to rest in a distance of 1.5 m.		only
	Use the equation:		
	work done = force \times distance		
	to determine the size of the force.	[3]	
	force =	N	
(C)	The spring constant of the spring used in the toy car is 80 N/m. Maddie suggests that it would be better to use a spring with a spring constant of 160 N/m because for the same extension, double the energy would be stored in the		
	spring. Explain whether you agree.	[2]	
	END OF PAPER		13
16			
10	© WJEC CBAC Ltd. (3430UF0-1)		

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1
	······	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1
		J

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

